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A B S T R A C T   

Textile and dyeing industries generate large quantities of wastewater rich in colourants, dyes, chemicals, sur-
factants, etc. Notably, textile effluents are highly coloured, toxic, odorous, and with high chemical oxygen de-
mand (COD) and low biochemical oxygen demand (BOD). These colour-causing complex organic compounds in 
wastewater streams are not completely degraded or removed using conventional physicochemical and biological 
treatment processes. Although as per regulatory norms, COD, colour, and BOD need to be eliminated if the 
treated water is to be reused. A batch-scale study of photochemical Advanced Oxidation Processes (AOP) to treat 
textile wastewater from a common effluent treatment plant is aimed to improve biodegradability and down-
stream performance. The assessment compared the techno-economic feasibility of integrating four photochem-
ical AOPs with existing biological treatment plant in terms of their efficiency, energy requirement, and overall 
cost of treatment. Photochemical AOPs considered in this study were UV photolysis, UV/H2O2, UV photo Fenton, 
and UV/TiO2 photocatalysis. Although every treatment improved the quality of treated water, UV/TiO2 pho-
tocatalysis was the most promising for removing COD and BOD and required the least electrical energy per order 
(10.79 kWh/m3/order-COD removal and 5.16 kWh/m3/order-colour removal) whereas UV/TiO2 was the most 
economic (0.77 US dollar or INR 59.75/m3).   

1. Introduction 

The textile industry, being particularly water intensive, now faces 
increasingly serious environmental challenges owing to scarcity of 
freshwater, stringent norms governing wastewater management, and 
industrial processes that release effluents rich in toxic chemicals 
including heavy metals. Non-compliance with regulations governing 
effluent treatment has adverse impacts on terrestrial and aquatic eco-
systems and on human health [1]. Therefore, the industry needs to focus 
its attention on proper treatment of effluents. Conventional methods of 
treating wastewater, especially as practised in the micro-, small-, and 
medium-scale enterprises (MSMEs), involve excessive amounts of 
ferrous salts, lime, and alum as coagulants and flocculants followed by 
the traditional aerobic biological treatments. The mainstream treatment 
technologies – coagulation and flocculation, flotation, adsorption, and 
biological treatment [2–5] – along with a few advanced systems based 
on membranes or evaporation [6] may help in managing only a few of 

the contaminants in wastewater from textile and dyeing industry. 
Thus, the traditional methods of treatment are inadequate in that 

they cannot handle volumetric shock loads of effluent and the heter-
ogenous nature of incoming wastewater. Moreover, these methods need 
different coagulants to treat different effluents; are not particularly 
efficient in removing colour; and generate large quantities of sludge, 
thereby creating secondary pollution [1,6–9]. Besides, the oxidation 
mechanisms used in these traditional methods fail to degrade or detoxify 
extremely persistent hazardous substances [10–14]. 

Biological methods of treating wastewater have proved to be more 
popular and have been adopted on a commercial scale because they are 
simple in design, cost effective, and user friendly. These methods include 
the activated sludge process, extended aeration, a moving-bed biofilm 
reactor or fluidized bed reactor, membrane bioreactors, a sequential 
batch reactor, and a submerged aerated fixed film [1,6,15–17]. Such 
methods have been earlier worked on pilot scale and proven effective in 
treating effluent from textile units include sequential batch reactor [16], 
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anaerobic- fluidized bed reactor [18], and activated sludge process 
[19,20]. As the effluent from textile units contains complex dyes and 
other toxic compounds which inhibit the growth of microbes, hence 
biologically treated water is not free of dissolved organics and unsuit-
able for further processing [21–24]. Furthermore, these microbial- 
treatment-based methods are slow with around 12–24 h of average 
hydraulic retention time of treatment, require large area and generate 
huge volumes of toxic slurry [25,26], which raises secondary pollution 
concerns. 

Given these shortcomings, advanced oxidation processes (AOPs) 
such as UV photolysis [27–29], UV photolysis of peroxide [30], UV 
photo Fenton [31–41], and UV photocatalysis [7,42–46] maybe bene-
ficial. These processes produce highly oxidizing reactive hydroxyl rad-
icals (OH⋅) that have a greater ability to destroy their targets and can 
oxidize and degrade organic compounds, rapidly and indiscriminately 
[13,29,47]. 

Therefore, combination of biological treatment system and AOPs has 
the potential to treat heterogenous effluents and improve the health of 
treatment plants, augment capacities and promote use of treated water. 
Many studies have explored the integrated approach using AOPs to treat 
even particularly challenging streams [8,20,43,48–80]. Some of the 
recent studies from India, have integrated Photocatalysis with conven-
tional biological treatment for treating mixed sewage effluent contain-
ing oils, solvents causing COD, BOD with other Persistent Organic 
Pollutants (POPs) and Contaminants of Emerging concern (CEC). The 
results show a significantly improved treated water quality as compared 
to conventional treatment alone [81]. Similar improvement has been 
reported in a recent study of photocatalysis as a standalone approach for 
treating heterogenous polluted open drain [81,82]. 

It is against this background that the present paper attempts to 
resolve the fundamental inadequacies in conventional practices by 
integrating photochemical AOPs with downstream conventional bio-
logical treatment for treating effluent from textile and dyeing units. To 
the best of our knowledge, no single study has compared the degradation 
of COD, Colour, and other regulated parameters with a detailed tech-
noeconomic analysis for various AOPs. More specifically, we assessed 
four methods (all based on various photochemical AOPs), namely UV- 
assisted photolysis, UV photolysis of peroxide, UV photo Fenton, and 
UV photocatalysis, for their feasibility as a pre biological treatment 
technology in terms of (a) their efficiency in eliminating colour, COD, 
and BOD, (b) their ability to meet regulatory norms, (c) their capacity to 
make the treated water more biodegradable so as to make the process 
compatible with further biological treatment downstream, (d) electrical 
energy consumption, and (e) cost effectiveness. The results of this study 
will help governments, regulatory bodies, and industries that such 
integration can benefit old centralized effluent treatment plants (ETPs). 
This will help to meet the growing demand for water treatment in 
developing countries as their economies continue to grow. 

2. Materials and methods 

2.1. Site conditions and sample collection 

A common effluent treatment plant (CETP) with a capacity to handle 
1 million litres of wastewater a day (MLD) was chosen for the present 
study. The effluent came from multiple cotton, hosiery, and polyester 
dyeing units and was being treated and discharged onto nearby fields in 
the Ganga River basin catchment area of the state of Uttar Pradesh, 
India. The site houses 11 textile and dyeing units which collectively 
contribute to a 1.55 MLD (million litres per day) influent to the common 
effluent treatment plant wherein the trials of various photochemical 
AOPs have been done. 

The existing treatment system starts with a screen chamber and 
collection sump followed by an equalization tank. The effluent is 
thereafter pumped at a controlled rate to a conventional primary 
treatment consisting of three flash mixer units, one each to add lime, 

ferrous salts, and alum, followed by adding polyaluminium chloride. 
Thereafter, effluent is sent to a tube settler, which separates the effluent 
into the supernatant and primary sludge. The primary sludge contains 
about 20 %–30 % water and is stored in drums of high-density poly-
propylene (HDPE) in a waste shed for eventual disposal at a landfill. The 
supernatant, on the other hand, is sent for further treatment to a bio-
logical treatment plant based on extended aeration. The biologically 
treated water is filtered through a multigrade filter and activated‑carbon 
filtration system. The residue (the sludge that remains) from the bio-
logical treatment plant is stored in a holding tank and dewatered in a 
filter press system which feeds the filtered water back to the treatment 
plant. This dried sludge is sold as manure whereas the clear water from 
the carbon filtration unit is stored in a separate tank connected to a 
pipeline that directs the overflow to an irrigation canal. 

In this study, equalization tank outlet was chosen as the ideal loca-
tion for sampling to ensure homogeneity of the effluent characteristics. 
From here, the samples were drawn using a submerged pump into four 
polypropylene jars each with a capacity of 50 L. The jars were filled to 
the brim, sealed, and then transported within 16 h in an air-conditioned 
vehicle to TADOX® wastewater treatment plant in Gurugram, in the 
state of Haryana [7,9,17,43,83]. After taking the samples for laboratory 
studies, the samples were immediately refrigerated at 4 ◦C to avoid any 
degradation of organic pollutants. A portion of these samples was sent to 
an accredited testing laboratory to assess the quality of wastewater in 
terms of the norms laid down by the regulatory authority in India for 
textile and dyeing units. 

2.2. Treatment of samples subjected to photochemical advanced oxidation 
processes 

For any treatment involving ultraviolet (UV) radiation to be effec-
tive, it is essential to remove any colloidal and suspended particles from 
the liquid to be treated. The particles were removed through coagulation 
and flocculation: once they had settled down following sedimentation, 
the supernatant was used for further investigation. For the study, the 
samples from the equalization tank were decanted in a 200 L tank fitted 
with a 0.5 HP AC motor to operate a steel agitator to mix the added 
coagulant and flocculants with water thoroughly for 30–45 min. After 
agitation, the mix was left undisturbed to allow the particles to settle, 
and the supernatant was used to carry out the rest of the studies. Full 
details of the coagulation and flocculation treatment are reported else-
where [7,9]. The supernatant was stored in a 200 L polypropylene tank – 
the primary treatment tank – referred to as PT from now on. The four 
methods mentioned in Section 1 were tested, as described below. 
Complete information of the UV system employed for the studies has 
been earlier published elsewhere [7,9]. 

2.2.1. Ultraviolet-assisted photolysis 
Ultraviolet-assisted photolysis for the experiment to test UV 

photolysis as an AOP, 10 L water from the PT was stored in a 10 L 
polypropylene beaker and connected to a submersible DC pump capable 
of circulating the water into the patented UV system. The treatment in 
recirculation mode lasted 120 min. The treated water was stored in 
another 10 L beaker. 

2.2.2. Ultraviolet photolysis of peroxide 
Ultraviolet photolysis of peroxide to 10 L water from the PT was 

added 10 mL of 30 % H2O2, which gave a solution of 9.97 mM. The 
solution was stirred for 30 min and then subjected to 120 min of UV 
light. 

2.2.3. Ultraviolet photo Fenton 
Ultraviolet photo Fenton to another 10 L water from the PT were 

added 2.78 g of FeSO4.7H2O and 10 mL of 30 % H2O2 (30 %), giving a 
solution of 1 mM FeSO4 and 9.97 mM hydrogen peroxide. The solution 
was stirred for 60 min and then subjected to 120 min of UV irradiation; 
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this process allowed proper mixing of ferrous salts and to achieve 
equilibrium of Fenton reactions. 

2.2.4. Ultraviolet photocatalysis 
Ultraviolet photocatalysis the last set involved heterogenous semi-

conductor photocatalysis (PC) using nanoparticles of titanium and UV 
light. A simplified process flow diagram of the TERI advanced oxidation 
technology (TADOX) is shown in Fig. 1. Technical information and 
detailed methodology of the TADOX® Technology based pilot scale 
plant treating 100 L per day (LPD) and its operation has been published 
in another recent article. Details of plant operation, analysis of the 
wastewater quality parameters, computation of energy requirements 
and evaluation of the figures of merit has been already given in the 
earlier publication of this series of case studies [9,17,43,84–88]. It in-
volves UV-TiO2 Photocatalysis as the secondary treatment followed by 
nanomaterial recovery at source. Such a photocatalytic treatment has 
been established to be useful in Dye intermediates, Basic organics, Dye 
molecules, Synthetic textile effluent, Real textile and dyeing wastewater 
treatment systems and has been successful in eliminating need of bio-
logical treatment at any stage [17,42,43,83,84,86–94]. 

During the TADOX® treatment, the treated water was transferred via 
a built-and-developed mechanism equipped with suitable membrane 
filters to remove the spent nanoparticles. Clean water was thus obtained, 
and the used nano catalyst recovered. For other three processes illus-
trated earlier, there was no need for separation of nano catalysts. Hence, 
to explore whether the nano catalyst from TADOX® can be reused for 
treating the next batch, all reject material from the nanomaterials re-
covery unit was stored in a reject-collection tank. Reject water from this 
tank was oven-dried repeatedly and regenerated after adequate washing 
and air drying to remove inorganic salts. To ascertain any loss in crys-
tallinity or other properties after one cycle of TADOX treatment, crys-
tallographic analysis was carried out using a Bruker D-8 Advanced X-ray 
Diffractometer with a CuKα wavelength of 1.54059 Å and 2θ scanning 
between 20◦ to 70◦ of fresh and reused TiO2 particles [95,96]. These 
recovered nanomaterials were then reused for photocatalytic treatment 
in place of fresh nanomaterials as above. 

2.3. Analysis of wastewater quality 

Water quality parameters of all the samples were analysed at a lab-
oratory accredited by the National Accreditation Board for Testing and 
Calibration Laboratories, India, in accordance with ISO/IEC 17025:2017 

using the prescribed methods [97]. Such physicochemical parameters as 
pH, electrical conductivity, and total dissolved solids (TDS) were 
determined using a Pocket Pro+ Multi 2 tester (Hach Company, Love-
land, Colorado). A spectrophotometer (DR6000, also by Hach) was used 
for recording the UV–Vis spectra. All samples were tested in triplicate. 
The mean values are reported here, and the coefficient of variation was 
8 %–20 %. 

2.4. Estimation of figures of merit 

Energy efficiency is compared in terms of electrical energy per order 
of magnitude of removal (EEO) in the photocatalytic method used in 
TADOX: EEO was introduced as a figure of merit by IUPAC and is defined 
as electrical energy units in kilowatt hours (kWh) essential for breaking 
down any pollutant C by an order of magnitude in a unit volume (1 m3) 
[96,98]. As seen in Eqs. (1) and (2), respectively, EEO was computed 
with respect to order of removal of COD and colour unit (CU). This 
parameter is critical in estimating the overall cost of treatment and for 
upscaling AOP to field applications. The similar approach has been 
earlier applied in previous publications by the authors [9]. 

EEO,COD =
Pt1000

Vlog
(
CODi

/
CODf

) (1)  

EEO,CU =
Pt1000

Vlog
(
CUi

/
CUf

) (2)  

where P is the electrical power consumption (in kWh), t denotes the time 
of treatment in hours, and V is the volume of wastewater treated; CODi, 
CODf, CUi, and CUf denote the initial and final COD (mg/L) and colour 
unit values in Pt–Co units of the water sample, as expressed earlier. 

2.5. Estimation of overall cost of integration 

The overall cost of the treatment was estimated by adding up all the 
key expenses in wastewater treatment, namely electrical energy con-
sumption and the cost of chemicals and catalysts. Electrical energy 
consumed includes that used for all relevant operations including mix-
ing, aeration, UV irradiation, and nanomaterial recovery for an end-to- 
end treatment. Similarly, it incorporates cost of consumption of all 
chemicals such as coagulants, flocculants, and nano catalysts. Full de-
tails of the method of calculating the cost have been published by our 
group elsewhere [9]. 

Fig. 1. Flow diagram of the heterogenous photocatalysis system based on TERI advanced oxidation technology (TADOX®) [7,9].  
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3. Results and discussion 

3.1. Appearance of treated water 

Raw effluent was treated using different methods, and Fig. 2 shows 
photos of raw effluent and of its samples after each of the four 
treatments. 

It is evident from Fig. 3 that the UV–Vis spectra of all AOP-treated 
water samples are substantially different from those of the raw (un-
treated) sample, indicating that all the four AOPs were effective in 
removing organic matter and colour from wastewater; Fig. 3 also shows 
that the UV Vis spectra of primary-treated water (PT) were markedly 
lower than those of raw water (R), which shows that the primary 
treatment is effective to some extent in removing suspended solids and 
colour. It is clearly seen from Fig. 2 that water subjected to any of the 
four AOPs appears markedly different, and that water subjected to the 
UV photocatalysis treatment is aesthetically the most pleasing. 

Water subjected to UV photolysis is darker than that subjected to PT 
and, to some extent, to photo Fenton, whereas water subjected to UV 
photolysis of peroxide and UV photocatalysis is clearer than that sub-
jected only to PT. The UV–Vis spectra also show clearly that the absor-
bance between 250 nm and 300 nm is the lowest in the case of UV 
photolysis of peroxide and UV photocatalysis, the two processes most 
effective in removing colour. Therefore, based on the appearance of the 
treated water (Fig. 2) and on UV–Vis spectra (Fig. 3), UV photolysis of 
peroxide and UV photocatalysis seem the most promising for removal of 
colour or further downstream biological treatment system. The absor-
bance in the 250–300 nm range suggests the presence of organic con-
taminants, UV-absorbable organic compounds, and oxidizable and non- 
oxidizable organic compounds typically represented as total organic 
carbon (TOC) in these samples [99]. The lower absorbance in all AOPs 
around 280 nm and the flattening of the peak in the case of UV photo-
catalysis supports the inference that the greater transparency of the 
treated water was mainly due to removal of organic compounds or TOC. 

3.2. Physicochemical characteristics and removal of organic pollutants 

Table 1 gives the physical, chemical, and organic parameters of the 
raw effluent, primary-treated effluent, and effluent treated with each of 
the four AOPs. The parameters are also compared with the norms laid 
down by the Central Pollution Control Board (CPCB), Government of 
India. Although such treated water is not meant to be discharged directly 
after either PT or after treatment using any of the four methods, the 

extent and the efficiency of the treatments compared to the CPCB 
standards show the advantages and disadvantages of integrating such 
treatments with the conventional biological treatment downstream. 

3.2.1. Physical parameters 
In terms of pH, all the AOPs except UV photolysis produced water 

that met the CPCB norms. For removing total dissolved solids (TDS), 
UV/TiO2 proved the most effective, followed, in that order, by UV/ 
H2O2, UV Fenton, and UV photocatalysis; this is because adding H2O2 
increased the content of TDS significantly. In terms of total soluble solids 
(TSS), however, only UV/TiO2 met the norms. Water treated using UV/ 
TiO2 meets the norms, with respect to physical characteristics for 
feeding to the downstream biological treatment downstream. 

3.2.2. Organic parameters and organic compounds 
This section compares the treatments in terms of several organic 

parameters such as colour, BOD, COD (Fig. 4), and oil and grease con-
tent. Although PT is effective to some extent in removing colour 
(Table 1), it takes the AOPs, especially UV/TiO2 and UV/H2O2, for 
photo-oxidative degradation of pollutants resulting in clearer water that 
meets the norms. 

For removing COD and BOD, UV Fenton and UV/H2O2, respectively, 
proved the most efficient. It is noteworthy that UV/TiO2 in fact 

Fig. 2. Untreated Raw effluent, Primary treated water and treated after each of the four treatments, all based on advanced oxidation processes.  

Fig. 3. UV Vis spectra of raw (untreated) sample (R), primary-treated water 
(PT), four photochemical AOP treatments. 
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increased BOD, an observation related to the treatment of wastewater 
reported by several earlier studies [7,8,17]. The increase in BOD is 
possibly because the treatment converts some residual or recalcitrant 
organics to biodegradable components, thereby making the biological 
treatment downstream more effective [6]. This explanation is supported 
by the observation that the UV/TiO2 treatment shows highest biode-
gradability of the treated water [8]. The integrated approach – using one 
of the AOPs together with biological treatment – was evaluated by Gil-
Pavas et al. (2020), who showed that using PC and electro Fenton in 
conjunction with biological treatment systems produced high-quality 
treated water that met the norms prescribed for reuse [100,101]. 

It is also noteworthy that a great deal of variation in residual BOD 
was observed in the case of these AOPs. This variation could be attrib-
uted to the generation of hydroxyl ions and other reactive oxygen spe-
cies (ROS) [102], which have their own oxidative potential and kinetics 
of reaction, thereby differentiating the reaction pathway of the oxidative 
degradation of dyestuff present in the raw effluent. Another important 
observation is that UV photolysis lowered COD significantly but had no 

effect on BOD: it is possible that whereas UV can degrade some of the 
light-sensitive dyestuff directly, UV alone cannot degrade other com-
pounds in wastewater such as organic constituents of dye baths 
including oils and solvents. UV/H2O2 was more effective than UV 
photolysis was in degrading such substances because adding H2O2 
resulted in higher rate of generation of ROS; these oxidative species lead 
to oxidative cleavage of molecules and, in turn, to removal of COD. 
Similar reactions are also expected in the photo Fenton treatment: in this 
reaction, the presence of iron salts catalyses the reaction and makes the 
treatment more effective in terms of oxidative potential and generation 
of ROS. However, the side reactions and the presence of iron salts in 
treated water and the resultant dark colour make the photo Fenton 
treatment unsuitable for treating water for reuse in textile units. Pho-
tocatalysis showed the highest BOD:COD ratio with minimal residual 
colour and lowest residual ions, which makes the process the most 
suitable among the AOPs for treating wastewater from textile units and 
for integrating the process with the existing conventional systems, a 
recommendation supported by our earlier studies [43]. 

Table 1 
Physicochemical parameters of raw (untreated) effluent from textile units, primary-treated effluent, and primary-treated effluent further subjected to each of four 
advanced oxidation processes (AOPs).  

Parameter Unit Mean values (CV%) Standards notified By 
CPCB for treated 
effluents from integrated 
textile units 

Raw 
effluent 

Effluent after 
primary 
treatment 

Primary-treated 
effluent subjected 
to UV photolysis 

Primary-treated 
effluent subjected 
to UV/H2O2 

Primary-treated 
effluent subjected 
to UV/FeSO4/H2O2 

Primary-treated 
effluent subjected 
to UV/TiO2 

pH – 7.8 (1.1) 9.2 (1.3) 8.6 (1.4) 7.8 (0.89) 8.1 (1.4) 7.6 (1.9) 6.5–8.5 

Conductivitya μS 7386.0 
(4.4) 

4042.0 (4.1) 4407.0 (5.2) 3941.0 (4.7) 5287.0 (4.5) 2471.0 (2.3) – 

Total dissolved 
solids 

mg/L 3685.0 
(5.5) 

2011.0 (5.7) 2017.0 (8.6) 2666.0 (9.1) 2686.0 (7.6) 1944.0 (5.7) 2100.0 

Total suspended 
solids mg/L 

1214.0 
(7.8) 204.0 (11.1) 191.0 (12.1) 131.0 (14.3) 102.0 (12.1) 21.0 (11.5) 100.0 

Colour 
Pt-Co 
units 

656.0 
(1.3) 305.0 (0.7) 303.7 (1.2) 79.0 (2.3) 156.7 (2.5) 45.0 (4.8) 150.0 

Oil and grease mg/L 124.3 
(12.4) 

118.3 (11.2) 117.2 (13.4) 40.5 (14.3) 1.3 (11.3) 3.2 (12.3) 10.0 

Total chromium mg/L 0.5 (1.9) 0.4 (1.2) 0.4 (1.3) 0.2 (1.6) 0.2 (1.4) 0.2 (1.2) 1.0 
Sulphide mg/L 3.4 (8.1) 3.3 (9.0) 3.1 (8.2) ND ND ND 2.0 
Phenolic 

compounds mg/L ND ND ND ND ND ND 1.0 

Sodium 
absorption ratio 
(SAR)  

365.0 315.8 378.6 570.8 423.6 110.3 26.0 

Total Kjeldahl 
nitrogena,b mg/L 11.2 

(9.1) 
10.5 (12.3) 3.1 (4.5) 5.6 (7.8) 1.9 (12.1) 1.5 (10.9) 50 

Biological oxygen 
demand (BOD) mg/L 

105.8 
(15.1) 84.5 (19.1) 103.7 (10.1) 55.0 (19.4) 103.1 (17.5) 166.1 (15.1) 30.0 

Chemical oxygen 
demand (COD) mg/L 

720.0 
(8.5) 650.0 (8.3) 290.5 (7.7) 160.0 (8.1) 144.0 (10.2) 200.0 (9.3) 250.0 

BOD: COD ratioa – 0.1 0.1 0.4 0.3 0.7 0.8 – 

Nitratea mg/L 42.3 
(2.3) 

7.3 (1.9) 6.5 (2.5) 6.3 (3.4) 6.0 (4.1) 11.4 (2.3) – 

Nitritea mg/L 10.3 
(1.1) 

0.3 (3.2) 0.1 (4.5) 0.1 (4.2) 0.1 (4.1) 4.0 (3.4) – 

Chloridea mg/L 
1595.3 
(5.1) 1302.4 (3.2) 957.2 (10.2) 850.8 (2.1) 1169.9 (7.1) 283.6 (8.1) – 

Phosphatea mg/L 0.9 (9.2) 0.1 (9.0) 0.1 (8.9) 0.2 (11.3) 0.1 (7.8) 0.1 (8.4) – 

Total hardnessa mg/L 520.0 
(8.1) 

420.0 (6.4) 140.0 (9.4) 80.0 (17.3) 200.0 (12.5) 360.0 (11) – 

Calciuma mg/L 112.0 
(8.8) 

52.0 (7.2) 28.8 (14.3) 14.4 (16.2) 40.0 (8.9) 49.6 (7.2) – 

Magnesiuma mg/L 
58.3 
(8.2) 18.1 (7.0) 16.5 (12.3) 10.7 (16.9) 24.3 (11.2) 57.4 (9.8) – 

Sodiuma mg/L 
1684.0 
(0.8) 935.0 (1.1) 901.0 (0.98) 1011.0 (1.3) 1201.0 (0.6) 403.4 (0.7) – 

Irona mg/L 7.2 (6.1) 6.5 (3.2) 4.6 (2.3) 5.6 (7.2) 10.1 (3.1) 1.3 (4.5) – 

Sulphatea mg/L 201.3 
(2.3) 

10.1 (12.4) 15.6 (8.3) 20.3 (3.5) 10.82 (5.1) 3.4 (8.1)  

Notes: Numbers in bold indicate values greater than the permissible limits stipulated by India's Central Pollution Control Board. 
Experiments were conducted in triplicate and above are the mean values and the relative standard deviation (RSD) computed is less than 10 % in reported values. 

a Standard not notified by the regulator for textile sector. 
b Ammonical nitrogen has been notified in the prescribed standard. 
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In summary, the data shows that UV photolysis removed 59.72 % of 
COD and had no significant effect on BOD. However, it also increased 
the colour from 656 to 903.7 units, likely due to the presence of UV- 
sensitive dye components in the sample. Treatment C (photo-Fenton) 
removed 76.1 % of colour and 80 % of COD, but it also increased the 
residual Fe content by 40 %, which could reduce the reusability of the 
treated water. Photolysis of H2O2) showed similar COD, BOD, and colour 
removal as photo-Fenton, but it had better colour removal. The colour 
was degraded to an overall PCU removal of 88 %, which is higher than 
treatment photo-Fenton. This is likely because photo-Fenton is a 
powerful oxidative reaction, but the requirement of ferrous salts as a 
catalyst result in discolouring the treated water and reducing its reus-
ability. The poor removal of colour and increase in Fe content in treated 
water are the main reasons why photo-Fenton has not been widely 
adopted in the textile wastewater treatment sector. Photolysis of H2O2, 
on the other hand, has the drawback that the residual colour in the 
treated water is still higher than the desired levels of 50 PCU. 

In terms of removing oil and grease (suspended and emulsified), their 
content in the water from primary treated water was less than that in 
raw, or untreated, effluent owing to the high adsorptive capacity of al-
kali earth metal oxide coagulants used in the primary treatment [5]. 
However, even after primary treatment, the treated water contained 
significant amounts of oil and grease. These emulsified oils cannot be 
removed using physical processes or chemical coagulation—only AOPs 
can degrade such long-chain saturated or unsaturated oils. All the AOPs 
were able to lower the oil and grease content (Table 1); their removal 
efficiencies are consistent with the kinetics of hydroxyl ions generation 
of each AOP [3,4]. UV photolysis and UV/H2O2 had little effect on oils 
and grease whereas photo Fenton and UV photocatalysis were far more 
effective in removing oils and grease, probably because of hydroxyl 
radicals and ROS produced in both the treatments, which show higher 
kinetics of ROS generation and higher oxidative potential than do other 
photochemical AOPs [3,29,47,103]. Streams containing emulsified oils 
are particularly amenable to being treated with sophisticated AOPs: 
simple AOPs may not be as effective with such streams. Moreover, the 
reduction in oil content and the increase in BOD in treated water also 
indicate that the long-chain saturated or unsaturated alkanes or polyols 
or di-ols are converted into simpler compounds, which are easily 
biodegradable. This difference is probably the main reason for the high 
BOD:COD ratio (biodegradability) seen in the case of treatments 
involving photo Fenton and UV photocatalysis; we have already re-
ported such degradation of oils into smaller compounds [7–9]. Effective 
degradation of oil and grease makes the downstream biological treat-
ment more effective, and water obtained following such treatment is 
safe enough for reuse in dye bath or washing processes during dyeing or 

textile production. Such water is also safe enough to be discharged into 
surface water bodies provided it meets the CPCB norms for discharge 
into surface water [104]. 

3.2.3. Inorganic parameters 
All the four AOPs removed sulphides in significant quantities, which 

is directly attributable to the oxygen requirements of sulphides and the 
fact that the hydroxyl radicals oxidized this sulphide to sulphates—the 
sulphides in the effluent thus worked as scavenging ions for the AOPs. 
This inference was confirmed from the fact that the weaker AOPs, 
namely UV photolysis and UV/H2O2, resulted in lesser removal in sul-
phides possibly because the two processes did not generate enough 
radicals to serve as scavengers. On the other hand, the stronger AOPs, 
namely photo Fenton and photocatalysis, removed all the sulphides, 
possibly because these two processes generated significant quantities of 
ROS, resulting in the oxidation of even those sulphides, oils, etc. that 
were not the primary targets of the reaction. 

None of the AOPs was effective in removing significant quantities of 
other inorganic compounds such as calcium and magnesium and, in 
turn, total hardness. This inability lies in the very nature of AOP-based 
treatment: the ROS mainly target oxidizable compounds in water. It is 
important to note that even after any of the treatments, the residual 
levels of sodium, calcium, and magnesium levels result in a higher so-
dium absorption ratio (SAR), which is a regulated parameter for the 
textile and dyeing industry. The higher SAR value after the treatment 
shows the inability of the AOPs to degrade inorganic pollutants and 
related contamination [102]. If this treated water with high SAR is 
discharged onto land or used for irrigation, the soil will turn sodic 
(excessively rich in sodium) and unfit for cultivation [105]. 

3.3. Reusability of catalysts 

To understand the economics of the treatment, the cost of replace-
ment of catalysts needs to be computed for all the AOPs. However, UV/ 
H2O2, UV/FeSO4, or UV H2O2 involve no catalyst, eliminating the matter 
of its reusability; only UV/TiO2 generates spent nanomaterials: to assess 
its economic viability, we need to evaluate its operational expenses in 
terms of the consumption and regeneration of the nanomaterial and the 
reuse and replacement needs [9]. 

The reusability potential of titanium nanoparticles has been evalu-
ated in two ways, namely by evaluating the characteristics of used 
nanomaterials using X-ray diffraction studies or by evaluating the 
associated changes in treatment efficiency following one-time reuse of 
the spent nanomaterials. The differences between the X-ray diffraction 
(XRD) spectra of titanium nanoparticles used only once and those reused 
are shown in Fig. 5. 

The markedly sharp and intense peaks seen in Fig. 5 depicting 
crystalline TiO2 nanoparticles used only once or reused confirm that the 
catalyst TiO2 remains intact. Both kinds of samples show the occurrence 
of the anatase phase of titanium, as verified by the International Centre 
for Diffraction Data File No. 21–1486. The marginal and insignificant 
peaks observed in the reused sample could be due to surface moisture in 
the material, the moisture probably originating in washing the spent 
nanoparticles after their first photocatalytic reaction and before their 
reuse for the next cycle; moreover, the catalyst was neither heated nor 
annealed prior to regeneration [9,88]. This also explains the reduction 
in the intensity of peaks in the XRD spectra. Therefore, as no significant 
visible difference was seen either in the crystallinity or in the XRD 
pattern between the freshly used and the reused catalyst, it should be 
possible to reuse the nanomaterials for another batch of UV/TiO2. This 
discussed in the next section. 

3.4. Appearance of treated water from fresh and reused titanium 
nanoparticles 

UV Vis spectra for photocatalysis treatment using fresh or reused 
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titanium along with those for raw (untreated) and primary-treated 
effluent are shown in Fig. 6. 

The significantly lowered absorbance at 220–300 nm clearly in-
dicates removal of UV-absorbable organics and other organic com-
pounds in significant quantities, and that at 270–300 nm, of TOC [99]. 
Thus, photochemical oxidation using either fresh or reused catalyst 
followed a similar degradation pathway and reaction mechanism. This 
may be examined further through detailed characterization of quality 
parameters of wastewater and comparison with CPCB standards. 

3.5. Quality of treated water resulting from reused catalyst 

Table 2 shows the physical, organic, cationic, and anionic parame-
ters of water obtained from UV photocatalysis treatments using reused 
titanium nanoparticles. 

As can be seen from Table 2, treatment that deployed reused catalyst 
also resulted in water compliant with the norms of CPCB except in the 
case of BOD and SAR, the values of which exceeded the permissible 
limits (the reasons are explained earlier). It is important to note that the 
efficiency in terms of removing colour, COD, and BOD remained the 
same irrespective of whether the catalyst was fresh or reused, which 
indicates that the reused nanomaterials still had enough active sites on 
their surface capable of adsorbing organic contaminants and generating 
enough ROS through UV light activation to yield results comparable to 
those from fresh nanoparticles. Therefore, it could be concluded that this 

nanomaterial could be reused over several cycles [43]. 

3.6. Consumption of electrical energy 

Whether a given AOP is suitable for large-scale deployment depends 
a great deal on its energy efficiency as measured in terms of energy 
consumption per unit volume of effluent treated; the lower the order of 
magnitude of the quantum of undesirable substances removed from the 
effluent (the EEO value), the higher the direct energy consumption, 
leading to higher cost of the treatment and greater capital expenditure in 
terms of the design of the UV reactor and hydraulic residence time of the 
treatment [7,8,17]. Table 3 shows the estimated EEO to lower the COD 
for each of the four treatments. 

Of the four AOPs, energy value was the highest for photocatalysis, 
followed, in that order, by photolysis of peroxide and photo Fenton. 
These values are much lower than the values in literature for the EEO, 

COD, 1–100 kWh/m3 being regarded as efficient [2,7]. Moreover, the 
estimated values are better than those reported recently by Khorram 
et al., who estimated the EEO, COD to be 178.61 kWh/m3 in treating a 
similar effluent using UV/TiO2 [106]. Even compared to the values from 
some recent work by our research group (98.5–161 kWh/m3), the values 
shown in Table 3 are much lower irrespective of the process. These 
lower EEO, COD values were due to the efficient design of the UV reactor, 
optimized arrangement of the UV lamp, and specialized low-energy 
lamps. 

It is noteworthy that photocatalysis consumed maximum energy 
whereas photo Fenton was far more energy efficient. However, it is 
important to note that the aim of any AOP is not merely to remove COD 
but also to improve the appearance of treated water and to make the 
treated effluent more easily biodegradable. This is why Table 4 relates 
the EEO to colour removal. 

As can be seen from Table 4, the EEO, CU value for photocatalysis is 
much lower than that for photo Fenton whereas the opposite trend is 
seen in the case of EEO, COD. This is because photocatalysis was better not 
only in eliminating colour and COD but also improved BOD of the final 
treated water; photo Fenton, on the other hand, could only remove COD 
and increased the biodegradability—with little impact on colour, 
although the degree of transparency is a crucial determinant of the 
suitability and feasibility of any AOP. To the best of our knowledge, such 
EEO, CU values, shown in the Table 4, have not been reported so far in any 
research on a variety of photochemical AOPs. 

3.7. Operational expenses 

To determine the economic feasibility of any of the four AOP-based 

Fig. 5. X-ray diffraction spectra of titanium nanoparticles used only once (A) and those reused (B) as part of a UV/TiO2 treatment following a primary treatment of 
effluent from textile units. 

Fig. 6. UV Vis spectra for photocatalysis treatment using fresh (D1) or reused 
(D2) titanium along with those for raw (R, untreated) and primary-treated (PT) 
effluent from a textile unit. 
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systems, the overall cost of each is presented in Table 5. 
Photolysis of H2O2 and photo Fenton were the most expensive, the 

cost of treating 1000 L of pre-treated water being INR 126 and INR 155, 
respectively, whereas UV/TiO2 was the most cost effective, at INR 59.75 
($0.8), a figure that compares favourably to that by GilPavas et al. 
(2020), who estimated the cost of treating 1000 L of effluent from textile 
units, using electrocoagulation and photo Fenton, at $2.3/m3 

[100,101]. UV/TiO2 proved cheaper in the present study because we 
reused titanium nanoparticles multiple times. The cost was also lower 
than that reported earlier by our research group ($1.55–$2.0/m3) for a 
study that also assessed the UV/TiO2 method but involved smaller 
textile dyeing units [7]. The cost estimated in the present study for 
proposed integration in cluster-level effluent treatment systems is in line 
with the requirements of such developing countries as India in which 
centralized treatment plants are not feasible given the scattered distri-
bution of units with significant adverse impacts on the environment 
unless the effluent from such units is treated at the level of a cluster 
[8,107,108]. 

4. Conclusion 

The study showed that effluent treatment based on AOPs alone 
presents tremendous potential in treating textile wastewater. Moreover, 
integration with the prevalent conventional biological treatment 

Table 2 
Physicochemical parameters of primary-treated effluent and primary-treated 
effluent further subjected to an advanced oxidation process involving fresh or 
reused TiO2.  

Parameter Unit Primary- 
treateda 

(PT) 

UV/TiO2  

(fresh 
TiO2) 

UV/ 
TiO2  

(reused 
TiO2) 

Standards 
notified By CPCB 
for treated 
effluents from 
integrated textile 
units [51] 

pH – 9.2 (1.3) 7.6 (1.9) 7.8 (1.7) 6.5–8.5 

Conductivity mS 4042.0 
(4.1) 

2471.0 
(2.3) 

2971.0 
(4.2) 

– 

Total 
dissolved 
solids 

mg/L 2011.0 
(5.7) 

1944.0 
(5.7) 

2001.0 
(4.2) 

2100.0 

Total 
suspended 
solids 

mg/L 
204.0 
(11.1) 

21.0 
(11.5) 

23.0 
(12.1) 100.0 

Colour 
Pt-Co 
units 

305.0 
(0.7) 45.0 (4.8) 

46.0 
(4.9) 150.0 

Oil and grease mg/L 
118.3 
(11.2) 3.2 (12.3) 

3.5 
(14.2) 10.0 

Total 
chromium 

mg/L 0.4 (1.2) 0.2 (1.2) 0.2 (2.0) 1.0 

Sulphide mg/L 3.3 (9.0) 
Not 
detected 
(ND) 

ND 2.0 

Phenolic 
compounds mg/L ND ND ND 1.0 

Sodium 
absorption 
ratio  

315.8 110.3 175.3 26.0 

Total Kjeldahl 
nitrogen 

mg/L 10.5 
(12.3) 

1.5 (10.9) 1.7 (9.1) 50b 

Biological 
oxygen 
demand 

mg/L 84.5 
(19.1) 

166.1 
(15.1) 

109.1 
(18.2) 

30.0 

Chemical 
oxygen 
demand 

mg/L 
650.0 
(8.3) 

200.0 
(9.3) 

204.0 
(10.1) 250.0 

BOD: COD 
ratiob – 0.1 0.8 0.5 – 

Nitrateb mg/L 7.3 (1.9) 11.4 (2.3) 
17.4 
(5.2) – 

Nitriteb mg/L 0.3 (3.2) 4.0 (3.4) 0.7 (3.7) – 

Chlorideb mg/L 
1302.4 
(3.2) 

283.6 
(8.1) 

567.2 
(10.2) 

– 

Phosphateb mg/L 0.1 (9.0) 0.1 (8.4) 0.02 
(12.1) 

– 

Total 
hardnessb mg/L 

420.0 
(6.4) 

360.0 
(11) 

200.0 
(10.7) – 

Calciumb mg/L 
52.0 
(7.2) 49.6 (7.2) 

36.8 
(7.8) – 

Magnesiumb mg/L 
18.1 
(7.0) 

57.4 (9.8) 
26.2 
(11.2) 

– 

Sodiumb mg/L 935.0 
(1.1) 

403.4 
(0.7) 

492.0 
(0.9) 

– 

Ironb mg/L 6.5 (3.2) 1.3 (4.5) 1.3 (4.7) – 

Sulphateb mg/L 
10.1 
(12.4) 3.4 (8.1) 3.6 (8.1)  

Note: Numbers in bold indicate values greater than the permissible limits stip-
ulated by India's Central Pollution Control Board; values in parenthesis show the 
coefficient of variation (%). 

a Includes conventional coagulation flocculation at the common effluent 
treatment plant. 

b Standards not notified by regulator for textile sector. 

Table 3 
Computation of estimated EEO to lower chemical oxygen demand by integrating 
four advanced oxidation processes with the conventional treatment system in 
treating effluent from textile units.  

Treatment parameter Unit UV/ 
Photolysis 

UV/ 
H2O2 

UV/ 
FeSO4/ 
H2O2 

UV/ 
TiO2 

Overall lamp 
requirement 

Watts  30  30  30  30 

Duration Hours  2  2  2  2 

Electrical energy 
consumed 

kWh/L 
per 
batch  

0.06  0.06  0.06  0.06 

Volume of water 
treated 

L per 
batch  10  10  10  10 

Electrical energy 
consumed per unit 
volume treated 

kWh/m3  6  6  6  6 

Ratio of initial and 
final chemical 
oxygen demand 
(Ci/Cf) 

–  2.48  4.5  5  3.6 

EEO, COD 

kWh/ 
m3/ 
order- 
COD  

15.2  9.19  8.58  10.79  

Table 4 
Estimated electrical energy in terms of colour removal for four advanced 
oxidation processes to treat effluent from textile units.  

Treatment 
parameter 

Unit UV 
photolysis 

UV/ 
H2O2 

UV/ 
FeSO4/ 
H2O2 

UV/ 
TiO2 

Overall lamp 
requirement Watts  30  30  30  30 

Duration Hours  2  2  2  2 
Electrical energy 

consumed 
kWh//L per 
batch  

0.06  0.06  0.06  0.06 

Volume of water 
treated 

L per batch  10  10  10  10 

Electrical energy 
consumed 
per unit volume 
treated 

kWh/m3  6  6  6  6 

Ratio of initial 
colour and 
final colour (CUi/ 
CUf) 

–  2.16  8.3  4.19  14.58 

EEO, CU 
kWh/m3/ 
order colour  18  6.53  9.65  5.16  
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systems may even be beneficial for meeting the compliances of the in-
dustry. It is evident from the characteristics of the raw effluent and 
primary treated effluent that biological treatment alone cannot meet to 
regulatory norms. Therefore, textile units should deploy further treat-
ment for reuse of water for their internal processes instead of dis-
charging it, directly or indirectly, into drainage or irrigation networks. 
Comparison of various photochemical AOPs shows that UV photolysis is 
not effective at removing colour, while photo-Fenton has the drawback 
of increasing the residual Fe content. Photolysis of H2O2 has better 
colour removal than Photo Fenton, but the residual colour is still higher 
than the desired levels. Treated water from Photocatalysis met the 
norms for colour removal. Hence, the best treatment among the four 
AOPs evaluated was UV/TiO2 photocatalysis, which removed 80 % of 
COD and increased the BOD:COD ratio by 8 times compared to the 
conventional treatment plant. it consumed the least energy (10.79 kWh/ 
m3 per order COD and EEO, CU = 5.16 kWh/m3 per order CU), which 
also made it the most cost effective (0.77 USD to treat 1000 L of 
effluent). It is also important to note that photocatalysis-based systems 
can be fully automated and can work in dual mode (the electricity can be 
from the grid or from solar panels)—the process is thus economical, 
widely applicable, and easily adaptable. Such studies shall benefit in 
achieving sustainable growth in the textile and dyeing industry and 
tremendous scope for future research studies. Further studies may 
include a field pilot plant of sufficient scale to operate in a continuous 
manner to accurately assess techno economic feasibility in terms of 
energy and chemical consumption. 
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V. Marathe, Pharmaceutical industry wastewater: review of the technologies for 
water treatment and reuse, Ind. Eng. Chem. Res. 53 (2014) 11571–11592, 
https://doi.org/10.1021/ie501210j. 

[15] T. Adane, A.T. Adugna, E. Alemayehu, Textile industry effluent treatment 
techniques, J. Chem. 2021 (2021), https://doi.org/10.1155/2021/5314404. 

[16] P. Pattnaik, G.S. Dangayach, A.K. Bhardwaj, A review on the sustainability of 
textile industries wastewater with and without treatment methodologies, Rev. 
Environ. Health 33 (2018) 163–203. 

[17] N. Bahadur, TERI Advanced Oxidation Technology (TADOX) to Treat Textile and 
Dyeing Wastewater, Achieve Zero Liquid Discharge, and Enhance Water Reuse: 
R&D-Based Policy Recommendations, the Energy and Resources Institute Policy 
Brief, 2021. 

[18] S. Sen, G.N. Demirer, Anaerobic treatment of real textile wastewater with a 
fluidized bed reactor, Water Res. 37 (2003) 1868–1878. 

[19] M. Gavrilescu, M. Macoveanu, Attached-growth process engineering in 
wastewater treatment, Bioprocess Biosyst. Eng. 23 (2000) 95–106. 

[20] I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of advanced oxidation 
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